If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+32x-162=0
a = 4; b = 32; c = -162;
Δ = b2-4ac
Δ = 322-4·4·(-162)
Δ = 3616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3616}=\sqrt{16*226}=\sqrt{16}*\sqrt{226}=4\sqrt{226}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{226}}{2*4}=\frac{-32-4\sqrt{226}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{226}}{2*4}=\frac{-32+4\sqrt{226}}{8} $
| 2x^2-78x+720=0 | | 4x/3=27 | | F(x)=5x^2+60x+194 | | X3+x-15=0 | | 3n=(6-N)(3) | | e3=6 | | 0,8t2-15t+50=0 | | 3(8)+10y=64, | | x-15/x=-2 | | 4x+38=4x+38 | | 2x^2-24x+720=0 | | -x/3+24=-6 | | 6(x-3)=2(5-x) | | x/2-16=-29 | | 5y+4=8y-5 | | -5(w-7)=2w+28 | | -x/5-11=-26 | | 6(x+40)=4x | | 3(x-8)=180 | | 23/5x=(5+1)x/23 | | 6x-8(x+1)=5 | | x/2-6=39 | | (x*x)+8x+15=120 | | 8x=7x+1,4 | | x/3-49=-37 | | -4x+25=17 | | 4/5n=2 | | x/2-40=-20 | | 2x^2+50x-46875=0 | | 2*3.15*x=220 | | 125•3=x | | x/2+43=-4 |